REGULATION OF TRANSLATION DURING ABIOTIC STRESS CONDITIONS IN PLANTS

Group leader: Mar Castellano Moreno - Researcher INIA

Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo. 913364586 / 914524900 Ext:1838 ( Lab 134 )

Personnel:

Most plants complete their life cycle in a single location and, therefore, their development and reproduction depend on the environmental conditions they are exposed to. Abiotic stresses such as drought, high and low temperatures, saline soils, etc., seriously affect plant development and growth. To cope with those challenges, plants have evolved genetically based physiological, biochemical and molecular strategies that allow them to survive under such adverse conditions (Timperio et al., 2008). This complex response requires an extensive molecular regulation of gene expression. However, in contrast to the global knowledge in the transcriptional regulation (Seki et al., 2002; Jiang and Deyholos., 2006; Matsui et al., 2008), very little is known about translational regulation in response to abiotic stress.

Abiotic stress is one of the most limiting factors for crop production.

 

In plants, translation is regulated under abiotic stress conditions in a dual fashion. Indeed, many studies have demonstrated that different abiotic stresses cause a significant decrease in global protein synthesis while, in such a global translation repression situation, certain mRNAs (generally codifying proteins involved in the abiotic stress response) are translated efficiently (Corsby and Vayda 1991; Davies, 1993; Berry at al., 1998; Kawaguchi et al., 2004; Fennoy and Bailey-Serres, 1995; Dhaubhadel et al., 2002; Rausell et al., 2003; Branco-Price et al., 2005). Although in plants it is commonly accepted that translation is a key step in the control of gene expression under abiotic stress conditions, the mechanisms involved in the onset of the synthesis repression and those governing selective translation of mRNAs are currently unknown.

Our lab is focused on two main goals: (1) the characterization of the molecular mechanisms involved in the regulation of translation under abiotic stress in plants and (2) the identification of the special features that allow the selective translation of certain mRNAs under abiotic stress conditions. Both two aspects would allow us to increase our knowledge of how plants adapt to environmental stresses.

Research Projects

   

  • Evaluación del potencial biotecnológico de la proteína 3P para aumentar la tolerancia de las plantas a altas temperaturas y a patógenos. 2014-2017 (RTA2013-00027-00-00). PI: M. Castellano.

  • Estudio de la regulacion del factor de iniciacion de la traduccion IF4E en respuesta a estres abiotico en plantas. MICINN (BIO2010-15751), 2011-2013, PI: M. Castellano.

 

 

 
 

Representative Publications

Cano, JM; Berrocal-Lobo, M; Domínguez-Núñez, JA. 2017. "Growth of Amanita caesarea in the presence of Pseudomonas fluorescens and Bacillus cereus". Fungal Biology. DOI: 10.1016/j.funbio.2017.05.009".

Álvarez-Aragón, R; Rodríguez-Navarro, A. 2017. "Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions". Plant Journal. DOI: 10.1111/tpj.13556".

Sesma, A; Castresana, C; Castellano, MM. 2017. "Regulation of translation by TOR, eIF4E and eIF2α in plants: current knowledge, challenges and future perspectives". Frontiers in Plant Science. DOI: 10.3389/fpls.2017.00644".

Fernández-Bautista, N; Fernández-Calvino, L; Muñoz, A; Castellano, MM. 2017. "HOP3 a new regulator of the ER stress response in Arabidopsis with possible implications in plant development and response to biotic and abiotic stresses". Plant Signaling & Behavior. DOI: 10.1080/15592324.2017.1317421".

Álvarez-Aragón, R; Rodríguez-Navarro, A. 2017. "Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions". Plant Journal. DOI: 10.1111/tpj.13556".

Winkler, A; Dominguez-Nuñez, J; Aranaz, I; Poza-Carrión, C; Ramonell, K; Somerville, S; Berrocal-Lobo, M. 2017. "Short-Chain Chitin Oligomers: Promoters of Plant Growth". Marine Drugs. DOI: 10.3390/md15020040 ".

Fernández-Bautista, N; Fernández-Calvino, L; Muñoz, A; Castellano, MM. 2017. "AtHOP3, a member of the HOP family in Arabidopsis, interacts with BiP and plays a major role in the ER stress response". Plant, Cell & Environment. DOI: 10.1111/pce.12927".

Fernández-Bautista, N; Domínguez-Núñez, JA; Castellano Moreno, MM; Berrocal-Lobo, M. 2016. "Plant tissue trypan blue staining during phytopathogen infection". Bio-protocol. DOI: 10.21769/BioProtoc.2078".

Toribio, R; Muñoz, A; Castro-Sanz, AB; Ferrando, A; Berrocal-Lobo, M; Castellano, MM. 2016. "Evolutionary aspects of translation regulation during abiotic stress and development in plants", p. 477-490. In G. Hernández and R. Jagus (eds.), Evolution of the Protein Synthesis Machinery and Its Regulation. Springer International Publishing, Cham. DOI: 10.1007/978-3-319-39468-8_18".

Echevarría-Zomeño, S; Fernández-Calvino, L; Castro-Sanz, AB; López, JA; Vázquez, J; Castellano, MM. 2015. "Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis". Plant, Cell & Environment. DOI: 10.1111/pce.12664".

Fernández-Calvino, L; Guzmán-Benito, I; Del Toro, FJ; Donaire, L; Castro-Sanz, AB; Ruíz-Ferrer, V; Llave, C. 2016. "Activation of senescence-associated dark-inducible genes during infection contributes to enhance susceptibility to plant viruses". Molecular Plant Pathology. DOI: 10.1111/mpp.12257".

 

 

 

Centro de Biotecnología y Genómica de Plantas UPM – INIA Parque Científico y Tecnológico de la U.P.M. Campus de Montegancedo
Autopista M-40, Km 38 - 28223 Pozuelo de Alarcón (Madrid) Tel.: +34 91 4524900 ext. 1806 / +34 91 3364539 Fax: +34 91 7157721. Contacto

Síguenos en: