Group leader: Manuel González-Guerrero - Assistant Professor

Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo. 913364558 / 914524900 Ext:1815 ( Lab 279 )

Lab Web Page:


Plants do not live in isolation but in close interaction with associated microorganisms that play an important role in plant nutrition and tolerance to biotic and abiotic stresses. We are interested in studying how legume endosymbionts (Rhizobium and arbuscular mycorrhizal fungi) affect plant metal homeostasis. This is important because: i) Iron, zinc and other transition metals are key components of 30-50% of the proteins of a typical cell and are involved in every biological process, ii) there is very little metal bioavailability in most soil types and this results in reduced agricultural output and human and animal malnutrition, and iii) plant endosymbionts act as sources or sinks of these essential oligonutrients.

Global soil zinc deficiency distribution (Alloway 2008).

Our two main research lines are:
  • Metal transport in the Sinorhizobium meliloti-Medicago truncatula interface. Symbiotic nitrogen fixation is a process that requires relatively vast amounts of metals as cofactors of the key enzymes involved (nitrogenase, leghemoglobin, cytochrome oxidases, …). These metals must be provided by the host plant, crossing a number of membranes to reach the nitrogen-fixing bacteroids. Using synchrotron-based X-ray fluorescence (S-XRF) we have determined how iron and other elements are delivered to the nodule and we are now characterizing a number of metal transporters upregulated in the nodule that would mediate this transport.





  • Metal transport in the Rhizophagus irregularis-M. truncatula interface. Arbuscular mycorrhizal fungi can improve metal uptake when plants are grown in soils with low bioavailability of these elements. In a similar way as it happens for phosphate, mycorrhization causes a down-regulation of epidermal plant metal transporters and the induction of cortical ones, especially in the periarbuscular interface.





  • Diverting metals to Medicago truncatula nodules (2016-2018). Plan Estatal MINECO (AGL-2015-65866-P). PI Manuel González-Guerrero.
  • Metal Transport in the Tripartite Symbiosis Arbuscular Mycorrhizal Fungi-Legume-Rhizobia (2014-2019). European Research Council Starting Grant. PI: Manuel González-Guerrero
  • Transporte de metales al nódulo de Medicago truncatula (2013-2015). Plan Nacional MINECO (AGL-2012-32974). PI: Manuel González-Guerrero.
  • Metal homeostasis in nodulated Medicago plants (2011-2015). Marie Curie International Reintegration Grant (PIRG8-GA-2010-276771). PI: Manuel González-Guerrero.


Representative Publications

Tejada-Jiménez, M; Gil-Díez, P; León-Mediavilla, J; Wen, J; Mysore, KS; Imperial, J; González-Guerrero, M. 2017. "Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency". New Phytologist. DOI: 10.1111/nph.14739".

Abreu, I; Saéz, Á; Castro-Rodríguez, R; Escudero, V; Rodríguez-Haas, B; Senovilla, M; Larue, C; Grolimund, D; Tejada-Jiménez, M; Imperial, J; González-Guerrero, M. 2017. "Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells". Plant, Cell & Environment. DOI: 10.1111/pce.13035".

de Souza, RS; Okura, VK; Armanhi, JS; Jorrin, B; Lozano, N; da Silva, MJ; Gonzalez-Guerrero, M; de Araujo, LM; Verza, NC; Bagheri, HC; Imperial, J; Arruda, P. 2016. "Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome". Scientific Reports. DOI: 10.1038/srep28774".

González-Guerrero, M; Escudero, VP; Saez, A; Tejada-Jimenez, M. 2016. "Transition metal transport in plant and associated endosymbionts: arbuscular mycorrhizal fungi and Rhizobia". Frontiers in Plant Science. DOI: 10.3389/fpls.2016.01088".

Sinharoy, S; Kryvoruchko, IS; Pislariu, CI; González-Guerrero, M; Benedito, VA; Udvardi, M. 2015. "Functional genomics of symbiotic nitrogen fixation in legumes with a focus on transcription factors and membrane transporters", p. 823-836. In F. J. de Bruijn (ed.), Biological Nitrogen Fixation, vol. 2. John Wiley & Sons, Inc.

Tejada-Jiménez, M; Castro-Rodríguez, R; Kryvoruchko, I; Lucas, MM; Udvardi, M; Imperial, J; González-Guerrero, M. 2015. "MtNramp1 is required for iron uptake by rhizobia-infected Medicago truncatula nodule cells". Plant Physiology. DOI: 10.1104/pp.114.254672".

González-Guerrero, M; Matthiadis, A; Sáez, Á; Long, TA. 2014. "Fixating on metals: New insights into the role of metals in nodulation and symbiotic nitrogen fixation". Frontiers in Plant Science. DOI: 10.3389/fpls.2014.00045".

Benito, B; González-Guerrero, M. 2014. "Unravelling potassium nutrition in ectomycorrhizal associations". New Phytologist. DOI: 10.1111/nph.12659".

González-Guerrero, M; Matthiadis, A; Sáez, Á; Long, TA. 2014. "Fixating on metals: New insights into the role of metals in nodulation and symbiotic nitrogen fixation". Frontiers in Plant Science. DOI: 10.3389/fpls.2014.00045".

Rodríguez-Haas, B; Finney, L; Vogt, S; González-Melendi, P; Imperial, J; González-Guerrero, M. 2013. "Iron distribution through the developmental stages of Medicago truncatula nodules". Metallomics. DOI: 10.1039/c3mt00060e".

Zielazinski, EL; González-Guerrero, M; Subramanian, P; Stemmler, TL; Argüello, JM; Rosenzweig, AC. 2013. "Sinorhizobium meliloti Nia is a P1B-5-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport". Metallomics. DOI: 10.1039/c3mt00195d".

Arguello, J.M.; Raimunda, D.; Gonzalez-Guerrero, M. 2012. Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry. Journal of Biological Chemistry 287:13510-13517.

Centro de Biotecnología y Genómica de Plantas UPM – INIA Parque Científico y Tecnológico de la U.P.M. Campus de Montegancedo
Autopista M-40, Km 38 - 28223 Pozuelo de Alarcón (Madrid) Tel.: +34 91 4524900 ext. 1806 / +34 91 3364539 Fax: +34 91 7157721. Contacto

Síguenos en: