METAL HOMEOSTASIS IN PLANT-MICROBE INTERACTIONS

Group leader: Manuel González-Guerrero - Assistant Professor

Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo. 910679190 Ext:79190 / 910679135 Ext:79134 ( Lab 279 )

Lab Web Page: http://metalsym.com

Personnel:

 

Iron, copper, zinc, and some other transition metals are essential nutrients for life, but they are scarce. Prevalent low metal availability in many of the main agricultural areas of the world reduce crop production and nutritional value, and this is worsened by climate change. However, metal metabolism is a double-edge sword, since slightly higher levels of metals are also poisonous for most life forms. Our group is dedicated to studying the molecular bases of the exquisite balance that maintains transition metal homeostasis and how this is impacted by beneficial and prejudicial plant-microbe interactions. To do this, we use classical genetic and biochemical approaches, with state-of-the-art metal imaging approaches.


 

Research objectives


1.- Transition metal exchange in beneficial plant-microbe interactions. Two of the best studied beneficial plant-microbe interactions are arbuscular mycorrhizal fungi (AMF) and rhizobia. AMF colonize over 80% of terrestrial plants providing essential nutrients to the host. We are studying how AMF deliver key transition metals and how the host plant accepts them, in an analogous mechanism to what has been reported for phosphate. In contrast to AMF, rhizobia are mostly restricted to legumes, where they colonize specialized root organs, the nodules. Within the nodules, rhizobia differentiate into nitrogen-fixing symbiosomes, a process that is heavily reliant on transition metals. We are characterizing the transporters responsible for metal allocation for symbiotic nitrogen fixation and determining how it is controlled.

 

 

 

 

 

 

 



2.- Specific cytosolic transition metal allocation. Transition metals are never free, hydrated, in the cytosol, but bound to a plethora of simple molecules and proteins. Consequently, from a few plasma membrane transporters, metals are specifically targeted to hundreds of apo-metalloproteins, in a process likely mediated by metallochaperones. Very little or nothing is known about iron, zinc, or molybdenum-chaperones in plants or bacteria, and plant copper-chaperone have been largely overlooked. We are identifying and analyzing new metallochaperones, particularly in the context of biological nitrogen fixation, a process with a large demand for these elements.


 

 

 

 

 

 

 

 

 

 

 

 

3.- Transition metal homeostasis in plant-pathogen interactions. Transition metals are essential at low levels and toxic at slightly higher ones. Modulating their local availability is used as a strategy to fend-off invading microbes in animals and plants. We are focused on unveiling the molecular bases of metal-based innate immunity in plants and in improving these pathways in crops.

 

 

 
 
 
Funding
  • Role of copper in plant innate immunity (2020-2023). Comunidad de Madrid (IND2019/BIO-17117). PI Manuel González-Guerrero
  • Role of plant Cu+-chaperones in intracellular copper trafficking in symbiotic nitrogen fixation (2019-2021). Agencia Estatal de Investigación (PGC2018-095996-B). PI Manuel González-Guerrero
  • Diverting metals to Medicago truncatula nodules (2016-2018). Plan Estatal MINECO (AGL-2015-65866-P). PI Manuel González-Guerrero.
  • Metal Transport in the Tripartite Symbiosis Arbuscular Mycorrhizal Fungi-Legume-Rhizobia (2014-2019). European Research Council Starting Grant. PI: Manuel González-Guerrero
  • Transporte de metales al nódulo de Medicago truncatula (2013-2015). Plan Nacional MINECO (AGL-2012-32974). PI: Manuel González-Guerrero.
  • Metal homeostasis in nodulated Medicago plants (2011-2015). Marie Curie International Reintegration Grant (PIRG8-GA-2010-276771). PI: Manuel González-Guerrero.
Publications in the last five years (full list here)

Escudero, V., Abreu, I., Tejada‐Jiménez, M., Rosa‐Núñez, E., Quintana, J., Prieto, R.I., Larue, C., Wen, J., Villanova, J., Mysore, K.S., Argüello, J.M., Castillo‐Michel, H., Imperial, J., González‐Guerrero, M. 2020. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. New Phytologist. DOI: 10.1111/nph.16642

Galotto, G., Abreu, I., Sherman, C.A., Liu, B., Gonzalez-Guerrero, M., Vidali, L. 2020. Chitin Triggers Calcium-mediated Immune Response in the Plant Model Physcomitrella patens. Molecular Plant-Microbe Interactions®. DOI: 10.1094/MPMI-03-20-0064-R

Escudero, V., Abreu, I., del Sastre, E., Tejada-Jiménez, M., Larue, C., Novoa-Aponte, L., Castillo-González, J., Wen, J., Mysore, K.S., Abadía, J., Argüello, J.M., Castillo-Michel, H., Álvarez-Fernández, A., Imperial, J., González-Guerrero, M. 2020. Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula Nodules. Frontiers in Plant Science 10, 1780. DOI: 10.3389/fpls.2019.01780

Abreu, I., Escudero, V., Montiel, J., Castro‐Rodríguez, R., González-Guerrero, M. 2019. Metal transport in Medicago truncatula nodule rhizobia-infected cells, in: The Model Legume Medicago Truncatula. John Wiley & Sons, Ltd, pp. 652–664. DOI: 10.1002/9781119409144.ch81

Roschzttardtz, H., González-Guerrero, M., Gomez-Casati, D.F. 2019. Editorial: Metallic Micronutrient Homeostasis in Plants. Frontiers in Plant Science 10, 927. DOI: 10.3389/fpls.2019.00927

Ibeas, M.A., Grant-Grant, S., Coronas, M.F., Vargas-Pérez, J.I., Navarro, N., Abreu, I., Castillo-Michel, H., Avalos-Cembrano, N., Paez Valencia, J., Perez, F., González-Guerrero, M., Roschzttardtz, H. 2019. The Diverse Iron Distribution in Eudicotyledoneae Seeds: From Arabidopsis to Quinoa. Frontiers in Plant Science 9, 1985. DOI: 10.3389/fpls.2018.01985

León-Mediavilla, J; Senovilla, M; Montiel, J; Gil-Díez, P; Saez, Á; Kryvoruchko, IS; Reguera, M; Udvardi, MK; Imperial, J; González-Guerrero, M. 2018. "MtMTP2-facilitated zinc transport into intracellular compartments is essential for nodule development in Medicago truncatula". Frontiers in Plant Science. DOI: 10.3389/fpls.2018.00990".

Gil-Díez, P; Tejada-Jiménez, M; León-Mediavilla, J; Wen, J; Mysore, KS; Imperial, J; González-Guerrero, M. "MtMOT1.2 is responsible for molybdate supply to Medicago truncatula nodules". Plant, Cell & Environment. DOI: 10.1111/pce.13388".

Senovilla, M; Castro-Rodríguez, R; Abreu, I; Escudero, V; Kryvoruchko, I; Udvardi, MK; Imperial, J; González-Guerrero, M. 2018. "Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation". New Phytologist. DOI: 10.1111/nph.14992".

Kryvoruchko, IS; Routray, P; Senjuti, S; Torres-Jerez, I; Tejada-Jiménez, M; Finney, LA; Nakashima, J; Pislariu, CI; Benedito, VA; Gonzalez-Guerrero, M; Roberts, DM; Udvardi, MK. 2017. "An iron-activated citrate transporter, MtMATE67, is required for symbiotic nitrogen fixation". Plant Physiology. DOI: 10.1104/pp.17.01538".

Tejada-Jiménez, M; Gil-Díez, P; León-Mediavilla, J; Wen, J; Mysore, KS; Imperial, J; González-Guerrero, M. 2017. "Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency". New Phytologist. DOI: 10.1111/nph.14739".

Abreu, I; Saéz, Á; Castro-Rodríguez, R; Escudero, V; Rodríguez-Haas, B; Senovilla, M; Larue, C; Grolimund, D; Tejada-Jiménez, M; Imperial, J; González-Guerrero, M. 2017. "Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells". Plant, Cell & Environment. DOI: 10.1111/pce.13035".

de Souza, RS; Okura, VK; Armanhi, JS; Jorrin, B; Lozano, N; da Silva, MJ; Gonzalez-Guerrero, M; de Araujo, LM; Verza, NC; Bagheri, HC; Imperial, J; Arruda, P. 2016. "Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome". Scientific Reports. DOI: 10.1038/srep28774".

González-Guerrero, M; Escudero, VP; Saez, A; Tejada-Jimenez, M. 2016. "Transition metal transport in plant and associated endosymbionts: arbuscular mycorrhizal fungi and Rhizobia". Frontiers in Plant Science. DOI: 10.3389/fpls.2016.01088".

Sinharoy, S; Kryvoruchko, IS; Pislariu, CI; González-Guerrero, M; Benedito, VA; Udvardi, M. 2015. "Functional genomics of symbiotic nitrogen fixation in legumes with a focus on transcription factors and membrane transporters", p. 823-836. In F. J. de Bruijn (ed.), Biological Nitrogen Fixation, vol. 2. John Wiley & Sons, Inc.

Tejada-Jiménez, M; Castro-Rodríguez, R; Kryvoruchko, I; Lucas, MM; Udvardi, M; Imperial, J; González-Guerrero, M. 2015. "MtNramp1 is required for iron uptake by rhizobia-infected Medicago truncatula nodule cells". Plant Physiology. DOI: 10.1104/pp.114.254672".

González-Guerrero, M; Matthiadis, A; Sáez, Á; Long, TA. 2014. "Fixating on metals: New insights into the role of metals in nodulation and symbiotic nitrogen fixation". Frontiers in Plant Science. DOI: 10.3389/fpls.2014.00045".

Benito, B; González-Guerrero, M. 2014. "Unravelling potassium nutrition in ectomycorrhizal associations". New Phytologist. DOI: 10.1111/nph.12659".

González-Guerrero, M; Matthiadis, A; Sáez, Á; Long, TA. 2014. "Fixating on metals: New insights into the role of metals in nodulation and symbiotic nitrogen fixation". Frontiers in Plant Science. DOI: 10.3389/fpls.2014.00045".

 
 
 
 
 

Centro de Biotecnología y Genómica de Plantas UPM – INIA Parque Científico y Tecnológico de la U.P.M. Campus de Montegancedo
Autopista M-40, Km 38 - 28223 Pozuelo de Alarcón (Madrid) Tel.: +34 91 0679100 ext. 79100  Fax: +34 91 7157721. Localización y Contacto

Síguenos en: