Group leader: Juan Imperial Ródenas - Research Professor - CSIC

Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo. 913364555 / 914524900 Ext:1815 ( Lab 271 )



We study plant-associated nitrogen-fixing bacteria, both “per se” and as a means to improve the growth and nitrogen economy of the plants associated with these microorganisms. We are interested in learning how these bacteria, key players in biogeochemical, ecological and agricultural processes, have adapted to carry out their activity under two unfavourable conditions:

i) In the presence of oxygen, even though nitrogen fixation is a strictly anaerobic process

ii) In association with the host plant, after competing in the rhizosphere with other organisms and overcoming a highly restrictive plant intracellular environment.

We apply molecular biology and genomic approaches in an effort to study and understand the diversity, regulation and physiology of the metabolic and functional adaptations that allow them to overcome these limitations.

In order to achieve these goals, we work with four biological systems:

a) Azotobacter vinelandii. The best known “true” aerobic diazotroph. It displays a highly complex set of adaptations that allow it to grow on N2 under air as efficienty as on a fixed N source. Recent analysis of its genome sequence has revealed that these adaptations endow A. vinelandi with the ability to sustain a varied anaerobic metabolism under air. In collaboration with the Rubio group (lab. 278), we are studying the role of a novel hydrogenase system, revealed by the genome sequencing effort, in the diazotrophic and anaerobic metabolism.



b) Rhizobium leguminosarum. In collaboration with the Palacios group (lab. 251), we are using this bacterium as a model to study both the genetic and metabolic determinants that allow rhizobia to carry out:


b1) A stringent microaerobic metabolism within a strictly respiratory bacterium, both inside the plant (nitrogen fixing metabolism) and in the rhizosphere (oxygen-limited respiratory metabolism).

b2) Rhizospheric and plant colonization of very diverse hosts (Pisum, Lens, Vicia, Lathyrus) with great efficiency.




c) Bradyrhizobium sp. (Lupinus mariae-josephi). In collaboration with the Ruiz-Argüeso group (lab. 251), we are studying the biology, diversity, distribution and specificity determinants of the rhizobial microsymbionts of a newly discovered lupine species, Lupinus mariae-josephi, the first true calcareous soil-adapted lupine, first described as an endemism from Montserrat (Valencia, Spain).




d) The symbiosis between Medicago truncatula and Sinorhizobium (Ensifer) meliloti. We are interested in studying how legume metal homeostasis is affected by nodulation, as well as the plant transporters mediating transition metal delivery to the bacteroid.



Research Projects
  • Biotecnología del metabolismo de hidrógeno y oxígeno para la mejora de inoculantes de leguminosas, DGI-MECD (BIO2007-64147), 2007-2010, IP: JM Palacios.
  • Utilización de los microorganismos para la evaluación del impacto ambiental y restauración del medio natural. Comunidad de Madrid. Grupos de Investigación de la CAM, 1-10 / 12-12. IP: T. Ruiz Argüeso.
  • LUPICAL: Nuevos sistemas Lupinus / bacterias endosimbióticas adaptados a suelos calizos: estudios orientados a su conservación. Fundación BBVA, 2009-2012, IP: T. Ruiz Argüeso
  • MICROGEN, Microbial Comparative Genomics. MICINN, Programa Consolider-INGENIO 2010, 1-10 / 12-14. IP: J. Imperial
  • Azotobacter vinelandii como biofactoría para la producción de hidrógeno. 2010-2012. Fundación Ramón Areces. IP: J. Imperial
  • MENOMED, Metal Homeostasis in Nodulated Medicago Plants. Marie Curie FP7-PEOPLE-2010-RG: 276771. 2011-2014. IP: M. González-Guerrero



Representative Publications

Sánchez-Cañizares, C; Jorrín, B; Durán, D; Nadendla, S; Albareda, M; Rubio-Sanz, L; Lanza, M; González-Guerrero, M; Prieto, R; Brito, B; Giglio, M; Rey, L; Ruiz-Argüeso, T; Palacios, J; Imperial, J. 2018. "Genomic diversity in the endosymbiotic bacterium Rhizobium leguminosarum". Genes. DOI: 10.3390/genes9020060".

Senovilla, M; Castro-Rodríguez, R; Abreu, I; Escudero, V; Kryvoruchko, I; Udvardi, MK; Imperial, J; González-Guerrero, M. 2018. "Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation". New Phytologist. DOI: 10.1111/nph.14992".

Armanhi, JSL; de Souza, RSC; Damasceno, NdB; de Araújo, LM; Imperial, J; Arruda, P. 2018. "A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome". Frontiers in Plant Science. DOI: 10.3389/fpls.2017.02191".

Durán, D; Imperial, J; Palacios, J; Ruiz-Argüeso, T; Göttfert, M; Zehner, S; Rey, L. "Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp". FEMS Microbiology Letters. DOI: 10.1093/femsle/fnx276".

Keller, J; Imperial, J; Ruiz-Argüeso, T; Privet, K; Lima, O; Michon-Coudouel, S; Biget, M; Salmon, A; Aïnouche, A; Cabello-Hurtado, F. 2017. "RNA sequencing and analysis of three Lupinus nodulomes provide new insights into specific host-symbiont relationships with compatible and incompatible Bradyrhizobium strains". Plant Science. DOI: 10.1016/j.plantsci.2017.10.015".

Tejada-Jiménez, M; Gil-Díez, P; León-Mediavilla, J; Wen, J; Mysore, KS; Imperial, J; González-Guerrero, M. 2017. "Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency". New Phytologist. DOI: 10.1111/nph.14739".

Abreu, I; Saéz, Á; Castro-Rodríguez, R; Escudero, V; Rodríguez-Haas, B; Senovilla, M; Larue, C; Grolimund, D; Tejada-Jiménez, M; Imperial, J; González-Guerrero, M. 2017. "Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells". Plant, Cell & Environment. DOI: 10.1111/pce.13035".

Msaddak, A; Rejili, M; Duran, D; Rey, L; Imperial, J; Palacios, J; Ruiz-Argueso, T; Mars, M. 2017. "Members of Microvirga and Bradyrhizobium genera are native endosymbiotic bacteria nodulating Lupinus luteus in Northern Tunisian soils". FEMS Microbiology Ecology. DOI: 10.1093/femsec/fix068".

Msaddak, A; Durán, D; Rejili, M; Mars, M; Ruiz-Argüeso, T; Imperial, J; Palacios, J; Rey, L. 2017. "Diverse bacteria affiliated with the genera Microvirga, Phyllobacterium and Bradyrhizobium nodulate Lupinus micranthus growing in soils of Northern Tunisia". Applied and Environmental Microbiology. DOI: 10.1128/aem.02820-16".

Armanhi, JSL; de Souza, RSC; de Araújo, LM; Okura, VK; Mieczkowski, P; Imperial, J; Arruda, P. 2016. "Multiplex amplicon sequencing for microbe identification in community-based culture collections". Scientific Reports. DOI: 10.1038/srep29543".

de Souza, RS; Okura, VK; Armanhi, JS; Jorrin, B; Lozano, N; da Silva, MJ; Gonzalez-Guerrero, M; de Araujo, LM; Verza, NC; Bagheri, HC; Imperial, J; Arruda, P. 2016. "Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome". Scientific Reports. DOI: 10.1038/srep28774".

Bourebaba, Y; Durán, D; Boulila, F; Ahnia, H; Boulila, A; Temprano, F; Palacios, JM; Imperial, J; Ruiz-Argüeso, T; Rey, L. 2016. "Diversity of Bradyrhizobium strains nodulating Lupinus micranthus on both sides of the Western Mediterranean: Algeria and Spain". Systematic and Applied Microbiology. DOI: 10.1016/j.syapm.2016.04.006".

Tejada-Jiménez, M; Castro-Rodríguez, R; Kryvoruchko, I; Lucas, MM; Udvardi, M; Imperial, J; González-Guerrero, M. 2015. "MtNramp1 is required for iron uptake by rhizobia-infected Medicago truncatula nodule cells". Plant Physiology. DOI: 10.1104/pp.114.254672".

Albareda, M; Rodrigue, A; Brito, B; Ruiz-Argueso, T; Imperial, J; Mandrand-Berthelot, M-A; Palacios, J. 2015. "Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake". Metallomics. DOI: 10.1039/C4MT00298A".

Jorrin, B; Imperial, J. 2015. "Population genomics analysis of legume host preference for specific rhizobial genotypes in the Rhizobium leguminosarum bv. viciae symbioses". Molecular Plant-Microbe Interactions. DOI: 10.1094/MPMI-09-14-0296-FI".

Durán, D; Rey, L; Sánchez-Cañizares, C; Navarro, A; Imperial, J; Ruiz-Argüeso, T. 2013. "Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain". Systematic and Applied Microbiology. DOI: S0723-2020(12)00159-2 [pii] 10.1016/j.syapm.2012.10.008".

Ormeño-Orrillo, E; Servín-Garcidueñas, LE; Imperial, J; Rey, L; Ruiz-Argüeso, T; Martínez-Romero, E. 2013. "Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia". Molecular Phylogenetics and Evolution. DOI: S1055-7903(13)00099-7 [pii] 10.1016/j.ympev.2013.03.003".

Durán, D; Rey, L; Sánchez-Cañizares, C; Jorrín, B; Imperial, J; Ruiz-Argüeso, T. 2013. "Biodiversity of Slow-Growing Rhizobia: The Genus Bradyrhizobium", p. 21-46. In B. Rodelas and J. González (ed.), Beneficial Plant-microbial Interactions: Ecology and Applications. CRC Press.

Rodríguez-Haas, B; Finney, L; Vogt, S; González-Melendi, P; Imperial, J; González-Guerrero, M. 2013. "Iron distribution through the developmental stages of Medicago truncatula nodules". Metallomics. DOI: 10.1039/c3mt00060e".

Rubio-Sanz, L; Prieto, RI; Imperial, J; Palacios, JM; Brito, B. 2013. "Functional and expression analysis of the metal-inducible dmeRF system from Rhizobium leguminosarum bv. viciae". Applied and Environmental Microbiology. DOI: AEM.01954-13 [pii] 10.1128/AEM.01954-13".

Albareda, M.; Manyani, H.; Imperial, J.; Brito, B.; Ruiz-Argueso, T.; Bock, A.; Palacios, J.M. 2012. Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum. BMC Microbiology 12:256.


Centro de Biotecnología y Genómica de Plantas UPM – INIA Parque Científico y Tecnológico de la U.P.M. Campus de Montegancedo
Autopista M-40, Km 38 - 28223 Pozuelo de Alarcón (Madrid) Tel.: +34 91 4524900 ext. 1806 / +34 91 3364539 Fax: +34 91 7157721. Contacto

Síguenos en: